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Defining and characterizing pathologies of the immune system
requires precise and accurate quantification of abundances and
functions of cellular subsets via cytometric studies. At this time,
data analysis relies on manual gating, which is a major source of
variability in large-scale studies. We devised an automated, user-
guided method, X-Cyt, which specializes in rapidly and robustly
identifying targeted populations of interest in large data sets. We
first applied X-Cyt to quantify CD4+ effector and central memory T
cells in 236 samples, demonstrating high concordance with manual
analysis (r = 0.91 and 0.95, respectively) and superior performance
to other available methods. We then quantified the rare mucosal
associated invariant T cell population in 35 samples, achieving man-
ual concordance of 0.98. Finally we characterized the population
dynamics of invariant natural killer T (iNKT) cells, a particularly rare
peripheral lymphocyte, in 110 individuals by assaying 19 markers.
We demonstrated that although iNKT cell numbers and marker ex-
pression are highly variable in the population, iNKT abundance cor-
relates with sex and age, and the expression of phenotypic and
functional markers correlates closely with CD4 expression.

automated analysis | flow cytometry

Flow cytometry is a technology widely used in clinical practice
and in research, particularly in the field of immunology. It is

capable of interrogating a wide variety of markers on many dif-
ferent cell types on a single-cell basis, using fluorophore-conjugated
antibodies. Although molecular as well as genomic studies have
advanced the understanding of immunological processes and
autoimmune diseases, the components of the human immune
system and their functions have yet to be comprehensively de-
scribed. Without such a reference “catalog” of the immune system,
it is ultimately difficult to interpret the pathogenic significance of
genetic, molecular, or phenotypic variants observed in diseases.
Immunoprofiling is emerging as a means to establish the con-

stituents, physiological roles, and population dynamics of the
immune system (1). Specifically, it aims to define the cellular
components of the immune system, the developmental processes
and lineage relationship among the cell types, and the phenotypes
and functions of each cell type at different physiological states. To
profile such a complex and dynamic system in large sample sizes,
high-throughput cytometric studies have become crucial.
Cytometric technologies are quickly advancing and outpacing

analytical approaches. At this time, flow cytometers can measure
up to 17 markers (2). Next-generation cytometers, such as cytom-
etry by time of flight, will soon to be able to assay hundreds of
markers (3). However, data analysis largely relies on manual gating
by expert analysts. It is a simple, but slow, process that is dependent
on 1D or 2D visualization and sequential gating, using software
such as FlowJo. As the numbers of samples and markers in a

study increase, gating becomes increasingly time consuming and
inconsistent and does not fully exploit the power of high-
dimensional information contained in these complex studies.
In recent years, a number of automated methods for cyto-

metric data handling, particularly for cell population identifica-
tion, have emerged and demonstrated their power to harness the
rich information in large-scale data, minimize inconsistencies, and
reduce analysis time (4). Current methods use parametric (5–7) or
nonparametric (8–13) clustering to partition high-dimensional
data. Some methods specialize in capturing difficult (such as
rare or convex) cell populations (6, 7, 13) and delineating de-
velopmental and functional relationships among cell types (14).
These methods make no assumptions about the underlying struc-
ture of the data and primarily aim to discover all discernible pop-
ulations de novo in each sample. As a consequence, they have been
used primarily for exploratory studies.
In contrast to exploratory studies, the goal of many immuno-

profiling studies is to reliably and consistently identify the target
cell population across many individuals. For example, a profiling
study may aim to quantify regulatory T (Treg) cells in healthy
controls and patients with autoimmune diseases, using antibodies
specifically selected for identifying Tregs. In this case, the goal of
the analysis is to accurately extract Tregs from all samples, using
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a standardized definition. Automating this type of analysis is
challenging because accurate intersample alignment of cell pop-
ulations is required in addition to the partitioning of the cell
populations within each sample.
We developed a user-guided analytical tool, X-Cyt, for auto-

mating targeted population identification in immunoprofiling
studies. X-Cyt uses multivariate mixture modeling for partitioning
cytometric data. Unlike unsupervised methods, X-Cyt allows the
user to set up the optimal partitioning scheme. By applying a
uniform scheme to all samples in a cohort, X-Cyt consistently
identifies and aligns the targeted cell populations.
In this study, we aimed to identify and characterize invariant

natural killer T (iNKT) cells. iNKT cells are lymphocytes with a
nondiverse T-cell receptor repertoire that recognize CD1d-presented
lipid antigens (15–17) and, in humans, normally make up less than
0.5% of circulating peripheral blood mononuclear cells (PBMCs)
(18). They play important roles in host defense, autoimmunity,
allergy, and cancer (19). Functional characterization of iNKT
cells requires comprehensive assessment of surface expression of
homing receptors, lectins, and cell adhesion molecules, as well as
cytokine production. Immunoprofiling studies have yet to assay
such a comprehensive set of markers in primary iNKT cells in a
sufficiently large cohort (18, 20–24). Here, we profiled iNKT cells
in 110 subjects with 19 surface and intracellular markers.

Results
Overview of the X-Cyt Method. X-Cyt identifies the populations of
interest in a given sample by partitioning all events into clusters
following a user-designed partitioning scheme. When more than
one marker is used to define populations, X-Cyt partitions the data
using multivariate mixture modeling via an expectation-maximization
(EM) algorithm, as described in Methods and SI Appendix.
We make the assumption that in profiling studies, samples within

a cohort share a general cell population structure. That is, similar
cell populations are present in all samples, and their relative spatial
configuration is conserved. X-Cyt therefore aims to follow the
same user-defined partitioning scheme to analyze all samples while
allowing for biological and technical variations. Population identi-
fication by X-Cyt is therefore accomplished in two major steps: a
user-guided “trial” analysis to set up the partitioning scheme and
a template-guided cohort analysis. Markers that describe the

phenotype and function of cells are analyzed separately down-
stream of population identification.
Step 1. Set up the Partitioning Scheme. The goal of the initial trial
phase of the analysis is to set up a partitioning scheme by optimizing
two parameters for mixture modeling: a parsimonious combi-
nation of differentiation markers for defining the population or
populations of interest and the number of clusters to adequately
and intuitively partition the events. The user test-partitions a few
representative samples, using different input parameters; eval-
uates the results; and then chooses one optimal scheme. The ideal
resulting configuration is one that most accurately captures each
target population as one coherent cluster of events (see Methods
for a detailed description of parameter selection). The user-
approved configuration (parameters of the mixture model compo-
nents) is passed onto the second step as the template (Fig. 1A).
Step 2. Template-Guided Cohort Analysis.X-Cyt initializes the mixture
model parameters of each sample to that of the template. The
EM algorithm then iteratively updates the parameters describing
the location, shape (covariance matrix), and proportion of each
cluster. The EM algorithm indexes each emerging cluster accord-
ing to the template, which automatically aligns across all samples
simultaneously to clustering (Fig. 1B). Downstream to population
extraction, markers that describe the phenotype and function of
cells are analyzed separately (Fig. 1C).
We have made X-Cyt, along with a sample data set and user

input files, available for download at www.broadinstitute.org/
mpg/xcyt/.

Demonstration of X-Cyt’s Performance in Two Data sets. We first
assessed the performance of X-Cyt in identifying common
cell populations by querying the proportions of memory cell
subsets in CD4+ T cells. We isolated CD4+ T cells from PBMCs
via magnetic-activated cell sorting depletion from a cohort
of 236 healthy donors and labeled them with antibodies
against CD45 isoforms RA and RO (CD45RA, CD45RO), and
L-selectin (CD62L) (see Methods and SI Appendix for exper-
imental methods).
To identify effector memory (TEM) and central memory (TCM)

T cells, we partitioned each sample in two steps: bivariate normal
mixture modeling using forward-scatter (FSC) and side-scatter
(SSC) to obtain a purer CD4+ T-cell population, and 3D normal

C 
Downstream analysis: 
Quantify phenotypic/
functional markers 

B
Template-guided 
cohort analysis 

A
Set up the 
partitioning  
scheme and 
choose the 
template. 
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+ - 

- 

g = 1 g = 2 g = 3 g = 4

Fig. 1. Schematic of X-Cyt’s analytical process (syn-
thetic samples). (A) In a few representative samples,
the user adjusts analytical parameters and evaluates
the clustering outcome. Adjustable parameters in-
clude the differentiation markers to be used, the
number of clusters in mixture modeling (g), distri-
bution type, and SD cutoffs for continuous markers.
The user selects one optimal set of parameters that
most accurately identifies the cell populations of
interest (here the blue cluster using g = 3). The
clustering result of the representative sample is
chosen as the template (dashed circles in the g = 3
panel). (B) X-Cyt applies the template to guide the
partitioning of all samples in the study. The pop-
ulation of interest (shown in red dots and blue
dashed circle) is consistently identified across all
samples. (C) Downstream to population extraction,
random samples are pooled to establish the distri-
bution of phenotypic/functional markers. The per-
centage of cells positive for each marker is reported
based on either mixture modeling (top) or SD cutoff
(bottom).
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mixture modeling using CD45RA, CD45RO, and CD62L. To
determine the optimal partitioning scheme, an expert analyst
assessed different sets of partitioning parameters in 10 random
samples. In the first step, a two-component mixture model cap-
tured the CD4+ T-cell population, which was extracted from
each sample. In the second step, the analyst evaluated a range
of four to nine clusters and selected the seven-cluster model, as
it most accurately captured the TEM and TCM subsets (Fig. 2A).
X-Cyt applied this partitioning scheme to all 236 samples and
consistently identified the TEM and TCM subsets (representative
samples shown in Fig. 2B). We compared X-Cyt results to pro-
portions defined by an independent expert cytometry analyst
with manual gating in FlowJo. We observed that the proportions
for both populations were highly concordant with the manual
analysis (r = 0.91 and r = 0.95; P < 10−15, Pearson correlation
test; Fig. 2C).

We wanted to quantitatively compare the performance of X-Cyt
with that of automated methods that were the top five performers
in the FlowCAP consortium challenge (4): FLoCK, ADICyt,
flowMeans, FLAME, and SamSPECTRAL. We were unable to
run FLoCK, as it was not able to use standard FCS3.0 format files.
We ran each method with their default parameters to identify
CD4+ TEM cells from lymphocytes. We analyzed all 236 samples,
using FLAME, and compared the CD4+ TEM cell percentages
with those procured by an expert user via gating in FlowJo.
FLAME achieved more modest concordance (r = 0.50) compared
with that achieved by X-Cyt (r = 0.91; see SI Appendix, Fig. S1).
Because flowMeans and SamSPECTRAL do not align clusters
across samples, comparison of results with X-Cyt was not possible
without manual intervention. Therefore, we manually inspected
a random subset (20 samples) of the clustering results, and in
each sample we selected the cluster most closely representing the
TEM cells to obtain a concordance. Even after manual selection
of clusters, flowMeans and SamSPECTRAL achieved limited
concordances of only 0.57 and 0.44, respectively. ADICyt had a
high sample failure rate. In three separate attempts with the same
20 samples, we observed that on average, 50% of samples failed to
cluster with different random seeds. We note, however, that ADICyt
achieved high performance on the limited samples it did success-
fully analyze (r = 0.98, average of three runs). Representative
clustering results by each method are shown in SI Appendix, Fig. S2.
Next we challenged X-Cyt to identify a rare population, mucosal

associated invariant T (MAIT) cells, from PBMCs for 35 subjects.
We labeled cells with antibodies against CD3, CD45, Vα7.2, and
CD161. Following convention, we defined MAIT cells as CD3+

CD45+Vα7.2+CD161+. We first partitioned PBMCs into four
clusters, using FSC and SSC to obtain lymphocytes. Subsequently,
we partitioned in CD3 and CD45 dimensions to obtain a double-
positive T-cell population. In five random samples, the analyst
evaluated three to seven clusters and selected the six-cluster
model as the best to identify MAIT cells. We then applied the
template to all 35 samples. Comparing proportions obtained by
X-Cyt with those procured by an independent manual analyst,
we again observed high concordance (r = 0.98; P < 10−15; SI
Appendix, Fig. S3).

Characterizing Rare iNKT Cells. We applied X-Cyt to identify
iNKT cell subsets from the peripheral blood samples of 110
individuals (see SI Appendix for experimental methods). We la-
beled PBMCs with a total of 19 surface and intracellular markers
in nine separate panels. Each panel included the antibodies for
CD3e, CD4, and α-galactosylceramide-loaded CD1d tetramer,
which are the standard markers used to identify iNKT cells (25),
as well as two to three phenotypic or functional markers.
We configured X-Cyt to identify iNKT cells in three steps: a

three-component bivariate normal mixture modeling using FSC
and SSC to extract lymphocytes from PBMCs, a three-component
bivariate normal mixture modeling using CD3e and CD4 to iden-
tify CD4+ and CD4− T cells, and a threshold cutoff of five
standard deviations above the mean of all lymphocytes in CD1d
tetramer to identify the iNKT cells (Fig. 3A).
We observed that iNKT cells were present in individuals at

extremely low but highly variable abundances, ranging from
0.0033% to 0.89% of all CD3e+ cells (mean = 0.072%; median =
0.031%). The proportion of iNKT cells that are CD4+ also ranged
dramatically, from 1.4% to 87% (mean = 39.5%). For compari-
son, an expert user manually gated and quantified iNKT cells and
the CD4+ subset in 36 of the 110 subjects, using FlowJo. Auto-
mated and manual results were almost perfectly concordant for
the percentages of both iNKT cells (r = 0.99; Fig. 3B) and the
CD4+ subset (r = 0.99; SI Appendix, Fig. S4).
Rapid and robust processing of cytometric data makes it fea-

sible to discover population dynamics of immune cell subsets
from profiling studies. We examined our cohort of 110 samples
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for interesting population dynamics of iNKT cellular subsets.
First, we note that 11 of the 110 subjects had two visits separated
by at least 2 mo. In these subjects, we observed stable iNKT
abundances and CD4+ proportions over time (r = 0.99 and
0.98, respectively; see SI Appendix, Fig. S5 and Fig. S6). We
observed a negative correlation between the proportion of
CD4+ iNKT cells and the (log10) proportion of total iNKT
cells (r = −0.48; P = 8.2 × 10−8, Pearson correlation; Fig. 3C).
Also, women had significantly higher amounts of iNKT cells than
men (medianfemale = 0.038%; medianmale = 0.022%; P = 8.7 ×
10−3, Wilcoxon test; SI Appendix, Fig. S7). Finally, we observed
that iNKT cell abundance correlated negatively with age (P =
0.014, Pearson correlation; SI Appendix, Fig. S8). The corre-
lations between iNKT cell abundance and age, sex, and CD4+

proportion are independent of each other; they remain significant
in a multivariate regression (SI Appendix, Table S2). However,
the proportion of CD4+ iNKT cells was not correlated with sex

(P = 0.12) or age (P = 0.75). Some of these trends had been
observed in previous data sets (24). With a larger sample size, we
confirmed the correlations with statistical significance.
Downstream of the successful identification and quantification

of CD4+ and CD4− iNKT cell subsets, we characterized the
expression pattern of phenotypic markers in each. We quantified
the expression of each marker in each subset by measuring the
proportion of events with positive expression. We randomly sam-
pled and pooled CD3e+ cells from all subjects to display the natural
intensity distribution of each marker. Two examples of phenotypic
markers are shown in Fig. 3 D and E. Eight of the 11 surface
markers [α4, β7, CCR6 (chemokine receptor 6), CCR5
(chemokine receptor 5), CD8α, CD94, CD161, and NKG2D
(killer cell lectin-like receptor subfamily K, member 1)] and two
of five cytokines (TNFα and IFNγ) followed bimodal dis-
tributions. For each of these 10 markers, we fitted a two-com-
ponent mixture model. Using the mean and SD of the pooled
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distribution, we calculated the proportions of iNKT cells be-
longing to the positive component in each sample, using maxi-
mum a posteriori estimation (SI Appendix). CCR4 followed a
trimodal distribution, which we fitted with a three-component
mixture model. We considered the sum of the higher two com-
ponents to be the positive portion. Two surface markers [CD103
and IL23R (interleukin 23 receptor)] and three intracellular
markers [IL4 (interleukin 4), IL13 (interleukin 13), and
IL17A (interleukin 17A)] showed negligible staining in all
CD3e+ cells. These five markers were excluded from subsequent
expression analyses.
After assessing the global pattern of phenotypic marker expres-

sion among the 110 subjects, we then applied principal component
analysis to look for general trends. We observed that the first
principal component captured 31.8% of the total variation (SI
Appendix, Fig. S9) and correlated tightly with the proportion of
CD4+ iNKT cells (r = −0.70; P < 10−17; Fig. 3F). We then ex-
amined the expression level of individual markers in all iNKT cells
and confirmed that each was correlated with the proportion
of CD4+ iNKT cells, indicating biased expression in either the
CD4+ or the CD4− subset (Fig. 3G and Table 1). Specifically,
CCR4 was preferentially expressed by the CD4+ subset,
whereas all other surface markers were CD4−-biased. Similarly,
functional markers also showed iNKT subtype bias, where
CD4− iNKT cells released much higher levels of TNFα and
IFNγ on PMA-ionomycin stimulation (Table 1). These results
suggest that variation in iNKT cell abundance, phenotypic
marker expression, and functional response are all captured by
CD4 expression, which is therefore a critical biomarker for
iNKT function.

Discussion
In this study, we profiled human iNKT cells, a rare immune cell
type, in 110 samples of peripheral blood. In this large cohort, we
showed that the quantity of iNKT cells was low but variable in
the population, showing increased quantity in females and a de-
creased quantity with age. Subsequently, we extracted patterns of
expression of surface phenotypic markers and intracellular cyto-
kines, observing differences between CD4+ and CD4− iNKT
subsets. By applying X-Cyt to characterize iNKT cells, we dem-
onstrated the potential for robust and efficient automated pop-
ulation identification in a large-scale immunoprofiling study.
X-Cyt reliably discovers targeted populations with important

advantages in terms of consistency and speed, which result from
user guidance and template-guided partitioning. We make the
distinction between the goal of X-Cyt and that of existing auto-
mated cytometric analysis tools that are, in general, designed for
exploratory studies. In exploratory studies, for example, those

aiming to map the developmental lineage of cell populations are
defined de novo in each sample. However, targeted studies focus
on a specific cell type, often in large sample sizes. In such studies,
we can assume samples in a cohort share a population structure
defined by selected markers. X-Cyt allows the user to choose
markers for defining cell types, the sequence of partitioning, and
the resolution at which to partition, thus catering the analysis to
the original intent of the experiment.
Both biological and technical variations often create notable

shifts in fluorescence intensities, which complicate batch data
analysis. However, the shifts rarely alter the relative spatial ar-
rangement of populations. X-Cyt uses a template to capture this
conserved structure and uses an EM algorithm to optimize the fit
for each sample independently, which gives the method substantial
tolerance for intensity shifts. Via EM, the corresponding pop-
ulations across samples are allowed to vary from the template
in terms of the “site” (the location parameter), “shape” (the
covariance matrix), and “size” (the mixing proportion). In SI
Appendix, Fig. S10, we illustrate samples in which a gate (i.e.,
in FlowJo) requires manual adjustment in each sample, but
X-Cyt automatically detects the shifted location via parameter
optimization.
The use of a template confers two additional advantages over

de novo clustering. First, the template serves as a guide for indexing
emerging clusters (e.g., the TEM and TCM clusters are indexed as
clusters 1 and 5, respectively, in every sample), which eliminates the
need for a separate alignment step that could potentially introduce
additional error. If a population is present in the template but
missing from a given sample, no event in the sample will be
assigned, and its proportion in that sample becomes “0.” Next, by
initializing the parameters to a close approximation of the optimal
solution, the number of iterations needed to reach convergence
in the EM algorithm decreases by several orders of magnitude,
substantially reducing computation time. To demonstrate, we
compared the run times of clustering, using X-Cyt with and without
initialization by a template. Using ∼200 megabytes of physical
memory, X-Cyt was able to partition the CD4+ T-cell subset
(∼8,000 cells) into four clusters using three markers (CD62L,
CD45RA, and CD45RO) in about 5 s per sample compared with
about 0.4 s with a template. In the MAIT cell study containing
500,000 cells per sample, X-Cyt partitioned a random subset of
100,000 cells into four clusters in two dimensions in ∼45 s without
a template. In contrast, clustering a full sample of 500,000 cells
required about 10 seconds when guided by a template.
Emerging cytometric technologies, such as cytometry by time

of flight, can simultaneously measure more than 30 markers in a
cell (26, 27) and facilitate precise characterization of the human
immune system. For these studies, robust and versatile analytical
methods will become indispensible. In addition to algorithms
well suited for exploratory studies, there is a strong need for
tools to replace gating-based manual analysis when conducting
focused characterization of targeted cell types. X-Cyt presents an
efficient and robust method for analyzing such high-throughput
immunoprofiling data sets.

Methods
Overview of Flow Cytometry Data Sets. CD4+ Memory T-cell Subset Study. PBMCs
were isolated from the whole blood of 236 healthy volunteers and depleted
of non-CD4+ T cells, using magnetic-activated cell sorting kits. Cells were
then stained with fluorophore-conjugated antibodies against CD45RO,
CD45RA, and CD62L.
Mucosal Associated Invariant T-cell Study. PBMCs were isolated from the whole
blood of 40 healthy. Cells were then stained with fluorophore-conjugated
antibodies against CD3, CD45, Vα7.2, and CD161.
iNKT Cell Study. PBMCs were obtained from the blood of 110 healthy vol-
unteers. From PBMCs, iNKT cells were stained with fluorophore-conjugated
antibodies against 14 cell surface markers and five intracellular cytokines,
after PMA-ionomycin administration.

Table 1. Differential expression of surface markers in CD4+ and
CD4− iNKT cells

Marker Δ(CD4− - CD4+) P value

NKG2D 66.5% 2.8 × 10−19

α4 integrin 58.4% 8.6 × 10−17

CCR5 58.0% 2.7 × 10−18

CCR6 38.4% 4.6 × 10−15

CD161 36.8% 9.5 × 10−17

CD8 31.5% 2.0 × 10−19

CD94 30.1% 3.6 × 10−18

β7 integrin 21.6% 1.5 × 10−7

CCR4 −33.4% 4.9 × 10−18

ΔTNFα* 27.8 2.6 × 10−9

ΔIFNγ* 23.3% 1.4 × 10−7

Δ denotes the differential expression upon administration of PMA-iono-
mycin vs. DMSO (PMA-ionomycin – DMSO).
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Detailed experimental protocols can be found in SI Appendix, Experimental
Methods. Flow cytometric data were exported from FlowJo as text files after
compensation and transformation in the “channel number” format.
Data Partitioning. X-Cyt partitions the data with user-designated differentia-
tionmarkers. At each step of partitioning, the user can opt to usemultivariate
mixture-modeling or univariate cutoffs to identify outliers.
Multivariate Mixture Modeling. X-Cyt fits a given number of multivariate com-
ponents to a sample via an EM algorithm, as previously described (5). The
user can specify three input parameters: the markers used for clustering,
the number of expected clusters, and the distribution type (multivariate
normal, skew-normal, t, or skew-t; default is normal). Given m differentiation
markers and g clusters, X-Cyt models a given sample as an m-variate mixture
of g components using EM algorithm initiated by k-means clustering. On
convergence, each cluster is described by a location parameter, a covariance
matrix that describes its multidimensional shape, as well as a mixing pro-
portion. Each event in the sample is assigned membership to one of the
g clusters. We describe the multivariate normal distribution and the EM
algorithm in SI Appendix.

Trial Analysis in Representative Samples. Using a small test set of random
samples, the user sets up the partitioning scheme, optimizes input parameters,
and chooses a template.
Select Test Samples. The user randomly selects a small subset of samples from
the cohort to serve as test samples. Assuming that a target population is
present in f% of all samples, the chances of encountering this population at
least once among N random test samples at a 95% confidence is described
by (1 − f)N = 0.05. Therefore, there is a 95% chance that a 20% population
will be observed at least once in 14 samples, a 50% population will be ob-
served at least once in five samples, and a 90% population will be observed
at least once in two samples. A table of recommended size of test-sets is
available in SI Appendix, Table S3.
Select Differentiation Markers. The user should select the subset of markers that
most efficiently distinguishes the cell type or types of interest from the rest
of the events. The user often already has selected a set of differentiating
markers while designing the marker panel for the experiment. For example,
one would use CD3, CD45 (RA/RO), and CD62L to identify naive T cells in
PBMCs. In contrast, if certainmarkers in the panel are assayed for the purpose
of characterizing the phenotype and function, rather than differentiating
cell types (e.g., certain intracellular cytokines and chemokine receptors), they
should be excluded in this step.
Select the Number of Clusters. In the trial analysis, the user should evaluate the
partitioning result of each sample from testing a range of g. For example,
given k differentiation markers, it is reasonable to test a range of k to 2k

clusters. The user reviews the output clusters and defines the optimal g as

one that most accurately captures the population of interest as one cluster
without including undesired events or spuriously splitting the population
into more than one cluster. Often, the target population remains stable
as one coherent cluster over a small range of g. In this case, the lowest g is
recommended to minimize computation time.
SD Thresholds. For rare cell types with extreme intensities in one marker M, it
is most efficient to first partition the sample to coarser-grained clusters,
based on other differentiation markers, and then distinguish the rare events
in M using a cutoff by SD threshold. For example, to identify Tregs from
PBMCs using a panel of CD3, CD4, CD25, and Foxp3 (forkhead box P3), one
may first partition all events with CD3, CD4, and CD25 to extract CD3+CD4+

CD25+-activated T cells and then apply a threshold cutoff in Foxp3 to extract
the Tregs.

Guided Cohort Analysis by Template. X-Cyt uses a user-approved template
selected from the trial analysis to guide the partitioning of all subsequent
samples. The template serves as the initial parameters and as the indexing
guide. Instead of using a k-means initialization, X-Cyt initializes each sample’s
mixture model parameters to that of the template’s, on which EM algorithm
iterates and converges quickly.

Phenotypic and Functional Marker Characterization. For each marker, we re-
port the percentage of cells with positive expression. We construct a pooled
sample of random events from all samples in the data set, thus establishing
a “reference” fluorescence intensity distribution for each marker.

Formultimodal markers, we assume the intensity distribution comprising n
normal components. We fit a 1D mixture model on the pooled sample and
then estimate the proportion of cells in each cell population positive for the
marker in each sample. Details are provided in SI Appendix.

For a unimodal marker, we specify a SD threshold. We report the pro-
portion of cells that express the marker above the threshold.
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